Fonctions usuelles

Fonction \(f(x)\) Dérivée \(f'(x)\) Intervalle de dérivabilité
$$k$$ $$0$$ $$\mathbb{R}$$
$$x$$ $$1$$ $$\mathbb{R}$$
$$ax+b$$ $$a$$ $$\mathbb{R}$$
$$x^2$$ $$2x$$ $$\mathbb{R}$$
$$x^n$$ $$n x^{n-1}$$ $$\mathbb{R}$$
$$\frac{1}{x}=x^{-1}$$ $$-\frac{1}{x^2}$$ $$]-\infty;0[\text{ et }]0;+\infty[$$
$$\frac{1}{x^n}=x^{-n}$$ $$-\frac{n}{x^{n+1}}=-nx^{-n-1}$$ $$]-\infty;0[\text{ et }]0;+\infty[$$
$$\sqrt{x}$$ $$\frac{1}{2\sqrt{x}}=-nx^{-n-1}$$ $$]0;+\infty[$$
$$sin(x)$$ $$cos(x)$$ $$\mathbb{R}$$
$$cos(x)$$ $$-sin(x)$$ $$\mathbb{R}$$
$$tan(x)$$ $$1+tan^2(x)=\frac{1}{cos^2(x)}$$ $$]-\frac{\pi}{2};\frac{\pi}{2}[\text{ }\cup\text{ } ]\frac{\pi}{2} + k\pi;\frac{\pi}{2} + (k+1)\pi[$$
$$ln(x)$$ $$\frac{1}{x}$$ $$]0;+\infty[$$
$$e^x$$ $$e^x$$ $$\mathbb{R}$$
$$arcsin(x)$$ $$\frac{1}{\sqrt{1-x^2}}$$ $$]-1;1[$$
$$arccos(x)$$ $$\frac{-1}{x^2+1}$$ $$]-1;1[$$
$$arctan(x)$$ $$\frac{-1}{\sqrt{1-x^2}}$$ $$\mathbb{R}$$
$$cosh(x)$$ $$sinh(x)$$ $$\mathbb{R}$$
$$sinh(x)$$ $$cosh(x)$$ $$\mathbb{R}$$
$$tanh(x)$$ $$1-tanh^2(x)=\frac{1}{cosh^2(x)}$$ $$\mathbb{R}$$
$$arcsinh(x)$$ $$\frac{1}{\sqrt{1+x^2}}$$ $$\mathbb{R}$$
$$arccosh(x)$$ $$\frac{1}{\sqrt{x^2-1}}$$ $$]1;+\infty[$$
$$arctanh(x)$$ $$\frac{1}{1-x^2}$$ $$]-1;1[$$
$$cotan(x)$$ $$\frac{-1}{sin^2(x)}$$ $$]0;+\pi[$$
$$arccotan(x)$$ $$\frac{-1}{x^2+1}$$ $$]-\infty;+\infty[$$
$$cotanh(x)$$ $$\frac{1}{sinh^2(x)}$$ $$\mathbb{R}$$
$$arccotanh(x)$$ $$\frac{1}{1-x^2}$$ $$\mathbb{R} \setminus \{-1;1 \}$$

Opérations

Opération Dérivée
$$u+v$$ $$u’+v’$$
$$ku \text{ (k une constante)}$$ $$ku’$$
$$u.v$$ $$u’.v+v’.u$$
$$\frac{1}{u}$$ $$\frac{-u’}{u^2}$$
$$\frac{u}{v}$$ $$\frac{u’v-uv’}{v^2}$$
$$v \circ u$$ $$u'(v’ \circ u)$$
$$u^\alpha$$ $$\alpha u’.u^{\alpha-1}$$
$$\sqrt{u}$$ $$\frac{u’}{2\sqrt{u}}$$
$$cos(u)$$ $$-u’sin(u)$$
$$sin(u)$$ $$u’cos(u)$$
$$e^u$$ $$u’.e^u$$
$$ln(u)$$ $$\frac{u’}{u}$$
$$u(ax+b)$$ $$a.u'(ax+b)$$
$$(f.g)^n$$ $$\sum_{k=0}^n \left(\begin{array}{c} n \\ k \end{array}\right) f^k .g^{(n-k)}$$
$$(f^{-1})’$$ $$\frac{1}{f’ \circ f^{-1}}$$
$$\frac{1}{u^n}$$ $$\frac{-n.u’}{u^{n+1}}$$
$$tan(u)$$ $$u'(1+tan^2(u))=\frac{u’}{cos^2(u)}$$
$$arctan(u)$$ $$\frac{u’}{u^{2}+1}$$

Tagged: orci, lectus, varius, turpis

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *