Al-Kashi’s theorem

$$a^2=b^2+c^2-2.b.c.cos⁡(A)$$ $$b^2=a^2+c^2-2.a.c.cos⁡(B)$$ $$c^2=a^2+b^2-2.a.b.cos⁡(C)$$

Equation of a circle

Circle C with center \(\Omega(\alpha;\beta) \) and radius r:
$$(x-\alpha)^2 + (y-\beta)^2 = r^2$$

Pascal’s triangle

p 0 1 2 3 4 5 6 7 8 9 10 11 12
n=0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1
7 1 7 21 35 35 21 7 1
8 1 8 28 56 70 56 28 8 1
9 1 9 36 84 126 126 84 36 9 1
10 1 10 45 120 210 252 210 120 45 10 1
11 1 11 55 165 330 462 462 330 165 55 11 1
12 1 12 66 220 495 792 924 792 495 220 66 12 1

Tagged: orci, lectus, varius, turpis

Leave a Reply

Your email address will not be published. Required fields are marked *