Usual functions
Function \(f(x)\) |
Derivative \(f'(x)\) |
Interval of differentiability |
$$k$$ |
$$0$$ |
$$\mathbb{R}$$ |
$$x$$ |
$$1$$ |
$$\mathbb{R}$$ |
$$ax+b$$ |
$$a$$ |
$$\mathbb{R}$$ |
$$x^2$$ |
$$2x$$ |
$$\mathbb{R}$$ |
$$x^n$$ |
$$n x^{n-1}$$ |
$$\mathbb{R}$$ |
$$\frac{1}{x}=x^{-1}$$ |
$$-\frac{1}{x^2}$$ |
$$]-\infty;0[\text{ and }]0;+\infty[$$ |
$$\frac{1}{x^n}=x^{-n}$$ |
$$-\frac{n}{x^{n+1}}=-nx^{-n-1}$$ |
$$]-\infty;0[\text{ and }]0;+\infty[$$ |
$$\sqrt{x}$$ |
$$\frac{1}{2\sqrt{x}}=-nx^{-n-1}$$ |
$$]0;+\infty[$$ |
$$sin(x)$$ |
$$cos(x)$$ |
$$\mathbb{R}$$ |
$$cos(x)$$ |
$$-sin(x)$$ |
$$\mathbb{R}$$ |
$$tan(x)$$ |
$$1+tan^2(x)=\frac{1}{cos^2(x)}$$ |
$$]-\frac{\pi}{2};\frac{\pi}{2}[\text{ }\cup\text{ } ]\frac{\pi}{2} + k\ pi;\frac{\pi}{2} + (k+1)\pi[$$ |
$$ln(x)$$ |
$$\frac{1}{x}$$ |
$$]0;+\infty[$$ |
$$e^x$$ |
$$e^x$$ |
$$\mathbb{R}$$ |
$$arcsin(x)$$ |
$$\frac{1}{\sqrt{1-x^2}}$$ |
$$]-1;1[$$ |
$$arccos(x)$$ |
$$\frac{-1}{x^2+1}$$ |
$$]-1;1[$$ |
$$arctan(x)$$ |
$$\frac{-1}{\sqrt{1-x^2}}$$ |
$$\mathbb{R}$$ |
$$cosh(x)$$ |
$$sinh(x)$$ |
$$\mathbb{R}$$ |
$$sinh(x)$$ |
$$cosh(x)$$ |
$$\mathbb{R}$$ |
$$tanh(x)$$ |
$$1-tanh^2(x)=\frac{1}{cosh^2(x)}$$ |
$$\mathbb{R}$$ |
$$arcsinh(x)$$ |
$$\frac{1}{\sqrt{1+x^2}}$$ |
$$\mathbb{R}$$ |
$$arccosh(x)$$ |
$$\frac{1}{\sqrt{x^2-1}}$$ |
$$]1;+\infty[$$ |
$$arctanh(x)$$ |
$$\frac{1}{1-x^2}$$ |
$$]-1;1[$$ |
$$cotan(x)$$ |
$$\frac{-1}{sin^2(x)}$$ |
$$]0;+\pi[$$ |
$$arccotan(x)$$ |
$$\frac{-1}{x^2+1}$$ |
$$]-\infty;+\infty[$$ |
$$cotanh(x)$$ |
$$\frac{1}{sinh^2(x)}$$ |
$$\mathbb{R}$$ |
$$arccotanh(x)$$ |
$$\frac{1}{1-x^2}$$ |
$$\mathbb{R} \setminus \{-1;1 \}$$ |
Operations
Operation |
Derivative |
$$u+v$$ |
$$u’+v’$$ |
$$k.u \text{ (k a constant)}$$ |
$$k.u’$$ |
$$u.v$$ |
$$u’.v+v’.u$$ |
$$\frac{1}{u}$$ |
$$\frac{-u’}{u^2}$$ |
$$\frac{u}{v}$$ |
$$\frac{u’v-uv’}{v^2}$$ |
$$v \circ u$$ |
$$u'(v’ \circ u)$$ |
$$u^\alpha$$ |
$$\alpha u’.u^{\alpha-1}$$ |
$$\sqrt{u}$$ |
$$\frac{u’}{2\sqrt{u}}$$ |
$$cos(u)$$ |
$$-u’sin(u)$$ |
$$sin(u)$$ |
$$u’cos(u)$$ |
$$e^u$$ |
$$u’.e^u$$ |
$$ln(u)$$ |
$$\frac{u’}{u}$$ |
$$u(ax+b)$$ |
$$a.u'(ax+b)$$ |
$$(f.g)^n$$ |
$$\sum_{k=0}^n \left(\begin{array}{c} n \\ k \end{array}\right) f^k .g^{(n-k)}$$ |
$$(f^{-1})’$$ |
$$\frac{1}{f’ \circ f^{-1}}$$ |
$$\frac{1}{u^n}$$ |
$$\frac{-n.u’}{u^{n+1}}$$ |
$$tan(u)$$ |
$$u'(1+tan^2(u))=\frac{u’}{cos^2(u)}$$ |
$$arctan(u)$$ |
$$\frac{u’}{u^{2}+1}$$ |
Tagged: orci, lectus, varius, turpis