Study Plan

Let \(f\) : (domain of definition \(x\), e.g.: \(\mathbb{R}\)) \(\rightarrow\) (domain of definition \(y\), e.g.: \(\mathbb{R}\)), \(f(x)=\) …

  1. Specify definition set
  2. Detect & investigate points of non-continuity or non-derivability
  3. Determine the limits of the function at the bounds of its definition set
  4. Detect the presence of infinite branches and study them
  5. Study variations of the function
  6. Determine the tangents to the curve for any stopping point, limit point or point of non-differentiability
  7. Graphic representation of the curve \(f\) \(\rightarrow\) synthesis

Definition set

Denominator \(\neq 0\) The expression under \(\sqrt{}\) \(\rightarrow\) + or = 0
Log \(\rightarrow \geq 0\)
Risk of non-differentiability when \(\vert x\vert\) or n-th root used in function \(f(x)\)
Discount:
When the function is even or odd \(\rightarrow [0; +\infty[\) and symmetry
Function is periodic \(\rightarrow\) study over 1 period

Limits

$$\text{Vertical asymptotes} \rightarrow \lim_{x \to x_0\pm} f(x)=\pm \infty$$
$$\text{Horizontal asymptotes} \rightarrow \lim_{x \to \pm \infty}f(x)=l \rightarrow \text{horizontal asymptote with equation y=l}$$
$$\text{Other infinite branches } \lim_{x \to \pm \infty}f(x)=\pm \infty \rightarrow \text{asymptotic direction}$$
$$\text{Asymptotic directions} \rightarrow \text{position of } (OM) \rightarrow M(x,f(x)) \text{and direction coefficient} \frac{f(x)}{x}$$
$$\text{If} \lim_{x \to \pm \infty} \frac{f(x)}{x} \text{does not exist} \rightarrow \text{no asymptotic direction}$$< br> $$\text{Si} \lim_{x \to \pm \infty} \frac{f(x)}{x}=\pm \infty \rightarrow \text{parabolic branch with vertical asymptotic direction}$$
$$\text{Si} \lim_{x \to \pm \infty} \frac{f(x)}{x}=0 \rightarrow \text{parabolic branch with horizontal asymptotic direction}$$
$$\text{If } \lim_{x \to \pm \infty} \frac{f(x)}{x}= a \in \mathbb{R}^* \rightarrow \lim_{x \to \pm \infty} f(x)-ax=b \in \mathbb{R} \rightarrow \text{line y=ax+b oblique asymptote}$$
$$\text{If} \lim_{x \to \pm \infty} \frac{f(x)}{x}= a \in \mathbb{R}^* \rightarrow \lim_{x \to \pm \infty} f(x)-ax=\pm \infty \rightarrow \text{parabolic branch of oblique asymptotic direction, that of y=ax.}$$
It is on or under \(y=a.x\) depending on the sign of \(f(x)-a.x\)

Variation table

Example: Variation table of a function defined on \(]-\infty;-2] \cap [0;+\infty[\) Exemple de tableau de variation

Tagged: orci, lectus, varius, turpis

Leave a Reply

Your email address will not be published. Required fields are marked *