Trigonometry’s summary of the properties and applications: remarkable transformations, equations, formulas, functions, remarkable values

Trigonometry is a branch of mathematics that studies the relationship between angles and the lengths of the sides of a triangle. It uses mathematical functions such as sine, cosine and tangent to describe these relationships. Trigonometry is used in many fields such as geometry, astronomy, physics, mechanics, and engineering.

Definition field

\(cos(x)\) and \(arccos(x)\) set to \([-1;1]\)
\(sin(x)\) and \(arcsin(x)\) set to \([-1;1]\)
\(arctan(x)\) set to \(\mathbb{R} \rightarrow\) image set to \(]-\frac{\pi}{2};\frac{\pi}{2}[\)

Fundamental relationships

$$tan⁡(x)=\frac{sin(x)}{cos(x)}$$ $$sin^2⁡(x) + cos^2(x) = 1 $$ $$sin^2⁡(x) = \frac{tan^2⁡(x)}{1+tan^2⁡(x)}$$ $$cos^2(x) = \frac{1}{1+tan^2⁡(x)}$$

Remarkable transformations

$$sin⁡(2\pi+x) = sin⁡(x)$$ $$cos⁡(2\pi+x) = cos⁡(x)$$ $$tan⁡(2\pi+x) = tan⁡(x)$$
$$sin⁡(-x) = -sin⁡(x)$$ $$cos⁡(-x) = cos⁡(x)$$ $$tan⁡(-x) = -tan⁡(x)$$
$$sin⁡(\pi-x) = sin⁡(x)$$ $$cos⁡(\pi-x) = -cos⁡(x)$$ $$tan⁡(\pi-x) = -tan⁡(x)$$
$$sin⁡(\pi+x) = -sin⁡(x)$$ $$cos⁡(\pi+x) = -cos⁡(x)$$ $$tan⁡(\pi+x) = tan⁡(x)$$
$$sin⁡(\frac{\pi}{2}-x) = cos(x)$$ $$cos⁡(\frac{\pi}{2}-x) = sin(x)$$ $$tan⁡(\frac{\pi}{2}-x) = \frac{1}{tan(x)}$$
$$sin⁡(\frac{\pi}{2}+x) = cos(x)$$ $$cos⁡(\frac{\pi}{2}+x) = sin(x)$$ $$tan⁡(\frac{\pi}{2}+x) = \frac{-1}{tan(x)}$$
$$sin⁡(\frac{3\pi}{2}-x) = -cos(x)$$ $$cos⁡(\frac{3\pi}{2}-x) = -sin(x)$$ $$tan⁡(\frac{3\pi}{2}-x) = \frac{1}{tan(x)}$$
$$sin⁡(\frac{3\pi}{2}+x) = -cos(x)$$ $$cos⁡(\frac{3\pi}{2}+x) = sin(x))$$ $$tan⁡(\frac{3\pi}{2}+x) = \frac{-1}{tan(x)}$$
$$cos⁡(x-\frac{\pi}{2}) = sin(x))$$

Trigonometric equations

\(k \in \mathbb{Z}\)
If \(sin⁡(a)=sin⁡(b)\), then \(a=b+2k\pi\) or \(a=\pi-b+2k\pi\)
If \(cos⁡(a)=cos⁡(b)\), then \(a=b+2k\pi\) or \(a=-b+2k\pi\)
If \(tan⁡(a)=tan⁡(b)\), then \(a=b+2k\pi\)

Addition formulas

$$sin⁡(a+b) = sin⁡(a).cos⁡(b) + sin⁡(b).cos⁡(a)$$ $$cos⁡(a+b) = cos⁡(a).cos⁡(b) – sin⁡(a).sin⁡(b)$$
$$sin⁡(a-b) = sin⁡(a).cos⁡(b) – sin⁡(b).cos⁡(a)$$ $$cos⁡(a-b) = cos⁡(a).cos⁡(b) + sin⁡(a).sin⁡(b)$$
$$tan⁡(a+b) = \frac{tan⁡(a)+tan⁡(b)}{1-tan⁡(a).tan⁡(b)}$$ $$tan⁡(a-b) = \frac{tan⁡(a)-tan⁡(b)}{1-tan⁡(a).tan⁡(b)}$$
$$sin⁡(p)+sin⁡(q) = 2.sin⁡(\frac{p+q}{2}).cos⁡(\frac{p-q}{2})$$ $$sin⁡(p)-sin⁡(q) = 2.sin⁡(\frac{p-q}{2}).cos⁡(\frac{p+q}{2})$$
$$cos(p)+cos(q) = 2.cos(\frac{p+q}{2}).cos⁡(\frac{p-q}{2})$$ $$cos(p)-cos(q) = -2.sin⁡(\frac{p+q}{2}).sin⁡(\frac{p-q}{2})$$
$$tan⁡(p)+tan⁡(q) = \frac{sin⁡(p+q)}{cos⁡(p).cos⁡(q)}$$ $$tan⁡(p)-tan⁡(q) = \frac{sin⁡(p-q)}{cos⁡(p).cos⁡(q)}$$
$$sin⁡(a).sin⁡(b)=\frac{1}{2}*(cos⁡(a-b)-cos⁡(a+b))$$ $$cos(a).cos(b)=\frac{1}{2}*(cos⁡(a+b)-cos⁡(a-b))$$
$$sin⁡(a).cos⁡(b)=\frac{1}{2}*(sin⁡(a+b)-sin⁡(a+b))$$

Duplicate formulas

$$sin⁡(2a)=2 sin⁡(a).cos⁡(a)=\frac{tan⁡(a)}{1+tan^2⁡(a)}$$ $$sin^2⁡(x)+cos^2(x)=1$$ $$cos⁡(2a) = cos^2(a)-sin^2⁡(a) = 2cos^2(a)-1 = 1-2sin^2⁡(a)$$ $$tan⁡(2a) = \frac{2tan⁡(a)}{1-tan^2⁡(a)}$$ $$sin^2⁡(a) = \frac{1-cos⁡(2a)}{2}$$ $$cos^2(a) = \frac{1+cos⁡(2a)}{2}$$ $$tan^2⁡(a) = \frac{1-cos⁡(2a)}{1+cos⁡(2a)}$$ $$tan⁡(a)= \frac{sin⁡(2a)}{1+cos⁡(2a)}=\frac{1-cos⁡(2a)}{sin⁡(2a)}$$ By setting \(t=tan⁡ (\frac{a}{2})\): $$sin⁡(a)=\frac{2t}{1+t^2}$$ $$cos⁡(a)=\frac{1-t^2}{1+t^2}$$ $$tan⁡(a)=\frac{2t}{1-t^2}$$

De Moivre’s formula

$$(cos⁡(a)+i.sin⁡(a))^n=cos⁡(n.a)+i.sin⁡(n.a)$$

Euler formula

$$cos⁡(\theta)=\frac{1}{2}(e^{i.\theta}+e^{-i.\theta})$$ $$sin⁡(\theta)=\frac{1}{2i}(e^{i.\theta}-e^{-i.\theta})$$ $$e^i\theta=cos⁡(\theta)+i.sin⁡(\theta)$$

Remarkable point values

$$0$$ $$\frac{\pi}{6}$$ $$\frac{\pi}{4}$$ $$\frac{\pi}{3}$$ $$\frac{\pi}{2}$$
$$sin⁡(x)$$ $$0$$ $$\frac{1}{2}$$ $$\frac{\sqrt{2}}{2}$$ $$\frac{\sqrt{3}}{2}$$ $$1$$
$$cos(x)$$ $$1$$ $$\frac{\sqrt{3}}{2}$$ $$\frac{\sqrt{2}}{2}$$ $$\frac{1}{2}$$ $$0$$
$$tan(x)$$ $$0$$ $$\frac{\sqrt{3}}{3}$$ $$1$$ $$\sqrt{3}$$ $$\nexists$$
$$cotan(x)$$ $$\nexists$$ $$\sqrt{3}$$ $$1$$ $$\frac{\sqrt{3}}{3}$$ $$0$$

Trigonometric functions

Direct circulars: \(sin⁡(x)\), \(cos⁡(x)\), \(tan⁡(x)\), \(cotan⁡(x)\), \(sec⁡(x)\), \(cosec⁡(x)\)
$$cotan(x) = \frac{1}{tan(x)}$$ $$cotanh(x) = \frac{1}{tanh(x)}$$ $$sec(x) = \frac{1}{cos(x)}$$ $$sec(x) = \frac{1}{cosh(x)}$$ $$cosec(x) = \frac{1}{sin(x)}$$ $$cotech(x) = \frac{1}{sinh(x)}$$ Reciprocal circulars: \(arcsin⁡(x)\), \(arccos⁡(x)\), \(arctan⁡(x)\), \(arccotan⁡(x)\), \(arcsec⁡(x)\), \(arccosec⁡(x)\)
Direct hyperbolics: \(sinh⁡(x)\), \(cosh⁡(x)\), \(tanh⁡(x)\), \(cotanh⁡(x)\), \(sech⁡(x)\), \(cosech⁡(x)\)
Reciprocal hyperbolics: \(argsinh⁡(x)\), \(argcosh⁡(x)\), \(argtanh⁡(x)\), \(argcotanh⁡(x)\), \(argsech⁡(x)\), \(argcosech⁡(x)\)

Tagged: orci, lectus, varius, turpis

Leave a Reply

Your email address will not be published. Required fields are marked *